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Abstract. The orientation dependence of the line energy of zero-temperature directed polymers
is studied analytically and numerically for the two-dimensional square lattice with site disorder.
Using the equivalence to single-step growth models, the exact line energy of maximum energy
paths is computed for exponential and geometric disorder distributions. The resulting expression
depends on the distributions only through their mean and variance. A universal square-root
singularity appears in the ground-state energy as the line orientation approaches the edges of the
wedge-shaped lattice. We also discuss the relationship between point-to-point and point-to-line
optimization problems, as well as their connection to the classic Wulff construction for crystal
shapes. In addition, we derive some general, distribution-independent properties of the optimal
path angle in the point-to-line configuration. This angle is argued to be directly measurable in
fracture experiments of anisotropic materials such as paper.

1. Introduction

Surface and interface energies in crystalline solids are anisotropic owing to the lattice
structure. Through the celebrated Wulff construction [1], this anisotropy is expressed in
the equilibrium crystal shape. Using the methods of statistical mechanics to compute the
orientation-dependent interface free energy, it is therefore possible in principle to predict the
shape of macroscopic crystals from microscopic models [2]. In practice, this programme
has been carried out only for simple cases such as domain shapes in the two-dimensional
Ising model [3].

During the past decade, it has become widely appreciated that the properties of interfaces
are strongly affected by energetic or structural disorder [4]. A paradigmatic system is the
two-dimensional Ising model with bond disorder first studied by Huse and Henley [5]. Since
interfaces in two dimensions are directed lines, this problem is equivalent to adirected
polymer in a random medium(DPRM) [6]. Mappings to a variety of other equivalent
representations [7] have led to a detailed understanding of the fluctuation properties of the
(1+ 1)-dimensional DPRM [8].

Much less is known, however, about the basicmacroscopicquantity characterizing an
interface in a disordered medium, namely, the interface free energy and its orientation
dependence [9]. In this paper we provide a detailed study of this question for the (1+ 1)-
dimensional DPRM. Since interfaces in disordered systems are generally governed by a
zero-temperature fixed point [4, 8], the focus is on theground-state line energy per unit
length, and the closely related line energy of maximum energy paths. We use the standard
square lattice model with paths directed along the diagonal, see figure 1. The conformations

0305-4470/98/285939+14$19.50c© 1998 IOP Publishing Ltd 5939



5940 J Krug and T Halpin-Healy

Figure 1. DPRM wedge geometry, with typicalL-step directed path.

of the DPRM form a wedge with opening angleπ/2, and the goal is to compute the line
energy of maximum and minimum energy paths as a function of the angleφ ∈ [−π/4, π/4]
enclosed by the polymer and the lattice diagonal.

The model and the quantities of interest are introduced in the next section. In section 3
we derive a remarkably simple expression for the maximum path energy in the case of
exponential and geometric disorder distributions, and we show that maximum and minimum
path energies display a universal square root singularity nearφ = ±π/4. The analytic
predictions are verified through numerical simulations in section 4, and additional results
for disorder distributions which cannot be treated analytically are given. In section 5 we
consider directed polymers constrained to end at a specified inclined base line, a problem
that turns out to be directly related to the Wulff construction, and some conclusions are
drawn in section 6.

2. Model and basic quantities

The DPRM lattice used in this work is shown in figure 1. Allowed paths (or polymers)
of L steps originate at the apex(x, y) = (0, 0) of the wedge and terminate at one of the
L + 1 endpoints with coordinatesx = −L,−L + 2, . . . , L and y = L. Each site of the
lattice carries a random energyε(x, y). We will adhere to the convention that energies are
non-negative,ε > 0, and independently drawn from a probability distributionP(ε) with
meanε̄ and varianceσ 2 = ε̄2− ε̄2.

The zero-temperature transfer matrix method [5, 8] iteratively generates the restricted
ground-state energyEmin(x, y) for all paths ending at(x, y) by solving the recursion relation

Emin(x, y + 1) = min[Emin(x − 1, y), Emin(x + 1, y)] + ε(x, y + 1) (1)

with initial condition Emin(0, 0) = 0. Similarly the restrictedmaximum path energy
Emax(x, y) is obtained from

Emax(x, y + 1) = max[Emax(x − 1, y), Emax(x + 1, y)] + ε(x, y + 1). (2)

The interval [Emin(x, y), Emax(x, y)] determines the energy range where the density of
states (which contains the full finite-temperature thermodynamic information) is nonzero.
Moreover, for a given site energy distributionP(ε) with ε > 0, the quantity−Emax(x, y) is
the restricted ground-state energy for the correspondingnegativeenergy distributionP(−ε),
ε < 0. For symmetric distributions,Emax andEmin are simply related, see below.
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To obtain self-averaging quantities, the path energies are normalized by the path
lengths. The Euclidean distance† from the apex to the endpoint(x, L) is L/ cosφ, where
φ = arctan(x/L) is the angle enclosed by the lattice diagonal. The minimum (ground state)
and maximum energies per unit length are therefore defined as

emin(φ) = lim
L→∞

L−1 cosφEmin(tanφL,L)

emax(φ) = lim
L→∞

L−1 cosφEmax(tanφL,L).
(3)

The averageenergy of a path ending at levelL is ε̄L. The average energy per unit
length is thereforēε cosφ, and it follows that

emin(φ) 6 ε̄ cosφ 6 emax(φ). (4)

The difference between the three quantities in equation (4) is a measure for the amount of
optimization involved in finding the ground state. Atφ = ±π/4 (x = ±L) only a single
allowed path exists, and equation (4) becomes an equality. We also note the identity

emin(φ)+ emax(φ) = 2ε̄ cosφ (5)

for symmetric disorder distributionsP(ε).

3. Analytic results

Two types of exact results will be derived in this section. First, we show that for the
exponential disorder distribution

P0(ε) = exp(−ε) (6)

as well as for the geometric distribution

Pp(ε) =
∞∑
n=1

p(1− p)n−1δ(ε − n) 0< p < 1 (7)

the maximum path energyemax(φ) is given by the simple expression

emax(φ) = ε̄ cosφ + σ
√

cos 2φ (8)

in which the disorder distribution enters only through its first and second moments. Since
the first term on the right-hand side of (8) is just the average path energy, the second term
σ
√

cos 2φ represents in a simple way the improvement relative to typical paths achieved in
the optimization process.

We will see below in section 4 that equation (8) provides a reasonable approximation
also for the uniform disorder distribution, however, in general it is not exact. As a simple
counterexample consider the binary distribution

Pb(ε) = (1− b)δ(ε)+ bδ(ε − 1) 0< b < 1. (9)

Application of (8) yields emax(0) = b + √b − b2, which exceeds the obvious bound
emax(0) 6 1 for 1

2 < b < 1. A plausible interpretation is thatemax(0) sticks to the maximal
possible value of unity forb > 1

2. In fact, this conclusion is qualitatively correct but
quantitatively wrong:emax(0) = 1 holds whenb exceeds the directed percolation threshold,
which is close to 0.7 for site percolation on the square lattice [10].

† We choose the Euclidean path length, rather than the number of steps of a path (which is the same for all paths
ending at levely), to be consistent with the continuum viewpoint adopted in the analytic calculations.
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Figure 2. DPRM’s close kinetic roughening relation: single-step model. Shaded diamonds
indicate legal growth events.

The second exact result concerns the behaviour ofemin andemax near the edges of the
wedge, atφ = ±π/4. We will show in section 3.2 that the square-root singularity

|emax(φ)− ε̄/
√

2| ∼ |φ ∓ π/4|1/2 φ→±π/4 (10)

appearing in the expression (8) is a generic feature of bothemin and emax for arbitrary
disorder distributions, with a prefactor which is proportional toσ .

3.1. The waiting time approach

The two distributions (6) and (7) are singled out because they can be interpreted aswaiting
time distributionsfor aMarkoviangrowth process on the square lattice [11–16]. The process
described by the exponential distribution evolves in continuous time, while the geometric
distribution corresponds to a stochastic discrete time update where all sites are updated
simultaneously and independently with probabilityp. As a consequence (7) reduces to (6)
underp→ 0 and a suitable rescaling of energy.

3.1.1. Exponential distribution. The equivalent growth model [12, 14–17] describes the
evolution of interface configurationsy = h(x, t), which are paths directed along thex-axis
and satisfying the single-step constraint|h(x, t) − h(x + 1, t)| = 1, see figure 2. Growth,
h(x, t) → h(x, t) + 2, occurs at local minima, i.e. sites withh(x + 1, t) = h(x − 1, t) =
h(x, t)+ 1, with independent exponentially distributed waiting times of mean 1. The slope
variablesη(x, t) = (1+ h(x, t) − h(x + 1, t))/2 ∈ {0, 1} then define a totally asymmetric
exclusion process [12, 14, 16, 18].

On large scales, the interface shape follows a deterministic hydrodynamic equation of
the form

∂th = V (∂xh) (11)

where the inclination-dependent growth rateV is given by [12, 14, 19]

V (u) = 1
2(1− u2). (12)

The lattice used in our work corresponds to a wedge-shaped initial conditionh(x, 0) = |x|,
which evolves into a self-similar profile

h(x, t) = tg(x/t). (13)
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Inserting this into (11), the shape functiong(ξ) has to satisfy

g(ξ)− ξg′(ξ) = V (g′(ξ)) (14)

with g′(ξ) = dg/dξ . The relevant solution [12] is a parabola,

g(ξ) = 1
2(1+ ξ2) ξ ∈ [−1, 1]. (15)

Outside of the ‘light cone’|x| < t no growth can take place.
In the mapping between growth models and zero-temperature directed polymers [14–

16] the site energies play the role of random waiting times, and the maximum path energy
Emax(x, y) becomes the time at which the site(x, y) of the lattice is filled. To compute it,
we first express the growth shape in polar coordinates, through a functionρ(φ) defined by

g = ρ(φ) cosφ ξ = ρ(φ) sinφ. (16)

The interface profile at timet is then given byy = tρ(φ) cosφ, x = tρ(φ) sinφ, and the
point (x, y) is reached at the timer/ρ(φ), wherer =

√
x2+ y2 is the distance to the origin.

Comparing this with the definition (3) it follows that

emax(φ) = 1/ρ(φ). (17)

Inserting (16) into (15) therefore yields a quadratic equation foremax, with the solution

emax(φ) = cosφ +
√

cos 2φ (18)

in agreement with equation (8).

3.1.2. Geometric distribution. The discrete time version of the single-step growth model—
or rather, the equivalent asymmetric exclusion process—has been studied both in the
probabilistic literature [20] and in the context of traffic modelling [21]. The key observation
is that in the steady state the local slopesh(x, t) − h(x + 1, t) are distributed as the spins
of an Ising chain at finite temperature. As a consequence the inclination-dependent growth
rate is given by

V (u) = 1−
√

1− p + pu2. (19)

Inserting this into equation (14) it can be verified that the growth shape function is

g(ξ) = 1−
√
(1− p)(1− ξ2/p). (20)

Transforming to polar coordinates according to (16) and using (17) the expression

emax(φ) = 1

p

[
cosφ +

√
(1− p) cos 2φ

]
(21)

for the maximum path energy is obtained, which reduces to the general form (8) by noting
that ε̄ = 1/p andσ 2 = (1− p)/p2 for the geometric distribution (7).

3.2. The edge singularity

In this section we explain the probabilistic origin of the square-root edge singularity (10).
The key arguments were developed previously in the context of queuing theory [22, 23].

To be specific, consideremin(φ) nearφ = π/4. Only a single path ends atx = L, and
its energy per unit length isemin(π/4) = ε̄/

√
2. The optimal path ending atx = L − 2

has a simple structure: it follows the edgex = y up to some levelys where it shifts to the
neighbouring rowx = y − 2. The position ofys is chosen to minimize the path energy.
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Owing to the one-dimensionality of the path geometry, the typical energy gain thus achieved
is proportional toσ

√
L for L→∞.

Similarly a path ending atx = L− 2k can be described in terms ofk switching times
y(i)s , i = 1, . . . , k, at which it switches from the rowx = y−2i+2 to the rowy−2i. When
viewed as a function of they(i)s , the energy difference between the path ending atx = L
and that ending atx = L − 2k traces out a Brownian surface [24] above ak-dimensional
substrate space of linear extentL. The minimum height of this surface is proportional to
σ
√
L for largeL. It follows that, for fixedk [22]

lim
L→∞

Emin(L,L)− Emin(L− 2k, L)√
L

= σf (k) (22)

where the positive functionf (k), related to the extremal properties ofk-dimensional
Brownian motion with increments of unit variance, is independent of the disorder
distribution.

To derive the behaviour ofemin(φ) near the edge, we would need to simultaneously
take k → ∞ andL → ∞ with 2k/L = 1− tanφ fixed, and subsequently letφ → π/4.
Relying on rigorous support [22, 23] we will assume here that this is equivalent to first
takingL→∞ at fixedk, and thenk→∞ in (22). If the edge singularity is of the form

emin(φ) = ε̄/
√

2− C(π/4− φ)ν + o((π/4− φ)ν) (23)

with ν < 1, equation (3) yields

Emin(L,L)− Emin(L− 2k, L) ≈
√

2LC(π/4− φ)ν =
√

2LC(k/L)ν. (24)

Consistency with (22) then requiresν = 1
2 andf (k) ≈ c√k for k→∞, where the constant

c is universal (independent of the disorder distribution). Since the argument clearly applies
equally well to the maximum energy paths,c can be fixed [23] by comparison with the
exact result (8), which yieldsC = √2σ and thereforec = √2C/σ = 2. We conclude,
therefore, that the behaviour of the line energies nearθ = π/4 is universally given by the
expression

emin,max(φ) = ε̄/
√

2∓
√

2σ |π/4− φ|1/2+ o(|π/4− φ|1/2) (25)

which depends on the disorder distribution only through its mean and variance.

4. Transfer matrix simulations

As a test of our fundamental expression, equation (8), for the functional form of the disorder-
averaged DPRM ground-state energy profile, we have performed extensive numerical
simulations of the model in the wedge geometry, as detailed in a recent review paper [8].
In figure 3(a) our results are shown for the exponential and geometric site distributions,
ensemble averaging performed over 50 realizations of the random energy landscape for
walks in excess of 104 steps. For both types of distribution, the agreement is extraordinary;
were the simulation data and theory each indicated by full lines, the curves would be
indistinguishable to the eye. To give the reader a sense of the quality of the agreement,
we have decimated the simulation data sets and used discrete symbols to render the figure
more legible. In the case of the exponential distribution, which possesses unit mean and
variance, (8) reduces to (18), and we expect a vertical intercept of two. For the even-handed
geometric distribution, withp = 1

2, equation (21) demands an intercept of 2+√2. These
features, as well as the shape of the profile, are nicely captured by the simulations.

Because of the enticingly simple form, it may be thought that equation (8) has a general
applicability that goes beyond those distributions, exponential and geometric, tied to a
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Figure 3. (a) Angular dependence of DPRM free-energy profile for exponential and geometric
distributions. Full curves indicate exact results, derived in the text, via mapping to the stochastic
growth model in waiting time representation. (b) Analogous findings for uniform distribution
indicates discrepancy between naive ‘theoretical’ and simulation results, as well as the role of
finite-size effects.
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waiting-time description of Markovian dynamics. As discussed above, this is not the case.
Even so, the discrepancy while undeniable, is quite small, at least for the case of the
uniform distribution, see figure 3(b). There, we plot results for systems withL = 103

and 104, to show the effects of finite system size. Results forL = 20 000, if plotted
on the same figure, would be indistinguishable from the broken curve. The full curve is
the ‘theoretical’ result, assuming naive application of equation (8) with mean and variance
dictated by the uniform distribution; i.e.̄ε = 1

2 andσ 2 = 1
12. The disagreement is largest

at φ = 0 and is at the 5% level, but vanishes asφ → π/4. Indeed, as discussed above
in section 3.2, this behaviour is dominated by a characteristic universal square-root edge
singularity, independent of the underlying disorder distribution. In figure 4(a), we focus
on the edge singularity, highlighting our findings for the two waiting time distributions. A
scaling plot is shown, meant to elicit the power-law behaviour asφ → π/4. The full lines
represent the exact formulae following from equation (8). Small deviations near the edge
(large negative abscissa), which were not previously visible in figure 3(a), are now readily
apparent, arising as a lattice artefact missed by our continuum result. A quick fit to the
simulation data reveals a slope that is 10% too large. Surprisingly, even the exact curves
have a slope that is too big,≈ 0.52 or so. An examination of the effective exponent, see
figure 4(b), clarifies the situation, showing that the true square-root singularity is rather
stubborn and manifests itself only very, very close to the edge. For simulations of the
DPRM on a discrete square lattice, this will require an extremely large system size, in order
that the first site off the edge possesses an angular locationφ ≈ π/4− e−15, not an easy
task.

5. The point-to-line problem

So far we have considered directed polymers pinned at both ends; in the thermodynamic
limit L→∞ this also fixes the orientationφ. Alternatively, one may fix only one endpoint
and let the other end of the polymer lie anywhere on a straight ‘substrate’ line forming
some angleθ relative to thex-axis (figure 5). In the context of first-passage percolation
[13], which is an equivalent formulation of the DPRM problem [14], this is known as the
point-to-line geometry. In the thermodynamic limit a particular orientationφ(θ) is then
chosen by minimizing (or maximizing) the energy among all allowed orientations. The
point-to-line geometry appears naturally [19] when the dynamics of growing interfaces is
formulated in terms of directed polymers [7].

5.1. The Wulff construction

By translational invariance the point-to-line problem is equivalent to the line-to-line problem,
in which the optimal path connecting two parallel lines, both at an angleθ with thex-axis,
is to be determined. The optimal path energy, divided by the distancel between the lines
(equivalently, the width of the ‘strip’ enclosed by the two lines, see figure 5), will be denoted
by ẽmin(θ) and ẽmax(θ) for the minimum and maximum energy case, respectively. As can
be seen from this figure, the length of a polymer oriented at an angleφ is l/ cos(φ − θ),
hence the quantity to be minimized (maximized) with respect toφ is emin(φ)/ cos(φ − θ)
(emax(φ)/ cos(φ − θ)), and we have

ẽmin(θ) = min
φ

(
emin(φ)

cos(φ − θ)
)

(26)
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Figure 4. (a) Edge singularity for two waiting time distributions. Here,eedge = ε̄/
√

2.
(b) Corresponding effective exponent for the case of the exponential distribution. Note that the
full curves represent exact results, not least-squares fits, while the symbols indicate simulation
data.
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Figure 5. Geometry of the point-to-line optimization problem, showing the substrate inclination
angle θ, as well as the terminal navigation directionφ. The dotted polymer conformation
illustrates the symmetry argument used in the derivation of equation (31).

ẽmax(θ) = max
φ

(
emax(φ)

cos(φ − θ)
)
. (27)

The reader may have recognized that equation (26) is precisely the two-dimensional
Wulff construction [25] for the minimal energy shape of a domain with line tension
emin(φ). The point-to-line energỹemin(θ) is therefore obtained from the following geometric
procedure: For each angleφ, a ray of lengthemin(φ) is drawn from the origin, and a straight
line running through its endpoint is constructed perpendicular to the ray. Then the function
ẽmin(θ) is the inner envelope of these lines. Similarlyẽmax(θ) is the outer envelope of lines
constructed from the polar plot ofemax(φ).

5.2. The optimal path angle

The orientation selected by the directed polymer in the point-to-line geometry is given by
the angleφmin,max(θ) at which the optimum in equations (26) and (27) is attained. As a
first illustration, consider the case without disorder, where the minimum (maximum) energy
path is simply the path with the minimum (maximum) number of bonds. Forθ = 0 all
paths traverse the same number of bonds. However, for anyθ > 0 it is easy to see that the
minimum energy path follows the lattice diagonal(1,−1), while the maximum energy path
runs along the(1, 1) direction; forθ < 0 their roles are reversed. Thus we have

φmin,max=
{
±π/4 θ > 0

∓π/4 θ < 0.
(28)

In the absence of disorderemin(φ) = emax(φ) = ε̄ cosφ, hence by inserting (28) into the
general expressions (26) and (27) we find

ẽmin(θ) = ε̄

cosθ + | sinθ | (29)
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corresponding to a domain shape with facets atθ = ±π/4, and

ẽmax(θ) = ε̄

cosθ − | sinθ | . (30)

We shall see later that the divergence ofẽmax at θ = ±π/4 is a generic feature.
Some properties of the optimal path angle in the presence of disorder can be proved in

generality. Owing to the symmetry underθ → −θ we may restrict ourselves to the range
θ > 0. Then

φmin(θ) > 0 φmax(θ) 6 0 (06 θ 6 π/4). (31)

To see this, suppose that for some angleθ > 0, φmin(θ) = φ0 < 0. Sinceemin(φ) is
symmetric aroundφ = 0, the path with orientation−φ0 > 0 has the same energy per
unit length but is shorter (figure 5), thus contradicting the assumption. The statement that
φmax6 0 follows in the same way.

Next we show that

lim
θ→π/4

φmax(θ) = −π/4. (32)

This is equivalent to the statement thatẽmax diverges atθ = π/4. The latter follows from
the observation that̃emax(θ) is bounded from below by the energy of the ‘edge’ path at
φ = −π/4, which is given byε̄/

√
2 cos(θ + π/4) and diverges asθ → π/4. In this limit,

the optimal path can increase its length without bounds by aligning with the substrate.
To proceed, we assume thatemin,max are smooth functions ofφ. The optimal path angle

is then found by equating the derivative ofemin,max(φ)/ cos(θ − φ) with respect toφ, to
zero. This yields

tan(θ − φm) = e′m
em

(33)

where we useem, φm as a shorthand foremin,max, φmin,max in relations which hold both for
the minimum and maximum energy paths, ande′m = dem/dφ.

Consider first the case of smallθ . At θ = 0, φmin = φmax = 0 = θ by symmetry.
Expanding equation (33) nearθ = φ = 0 we obtain

φm ≈ em(0)

em(0)+ e′′m(0)
θ. (34)

For small anglesφm is linear inθ , with a prefactor inversely proportional to the ‘stiffness’
em(0)+ e′′m(0). The inequalities (31) yield a definite sign for the stiffnesses,

emin(0)+ e′′min(0) > 0 emax(0)+ e′′max(0) 6 0. (35)

For the exponential and geometric distributions equation (8) yieldsemax(0)+e′′max(0) = −σ .
Through equation (33) the divergence ofφmax for θ → π/4 is linked to the square-root

edge singularity ofemax(φ). Let θ = π/4−1θ andφmax= −π/4+1φ, then equation (10)
yields e′max(φmax) ∼ (1φ)−1/2. Inserting this into (33) it follows that1φ ∼ (1θ)2, i.e. the
optimal angleφmax approaches its limit (32) at zero slope. In contrast, the minimum energy
angleφmin(θ) approaches a nonuniversal limitφ∗min < π/4 for θ → π/4, which is given by
the solution of (33) withθ = π/4.
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Figure 6. DPRM point-to-line problem: theory versus simulation for exponential and geometric
distributions. Observe the linear response for small inclination angles,θ → 0.

5.3. Simulation of point-to-line paths

As a test of the above findings, we have studied a variant of the zero-temperature DPRM,
adapted to the geometry previously indicated in figure 5. Forθ 6= 0, the shortest walks
(i.e. those withφ = π/4) possess 1000 steps. Disorder averages were performed over 2000
realizations of the random energy landscape. In the case of the exponential and geometrical
distributions, our fundamental formula, equation (33), can be rewritten,

θ = φ − tan−1

(
ε̄ sinφ + σ sin 2φ/

√
cos 2φ

ε̄ cosφ + σ√cos 2φ

)
(36)

which expresses the optimal navigation direction,φ, implicitly in terms of the substrate
inclination angleθ. In figure 6, we show this theoretical curve, along with our numerical
results. Clearly, the agreement is quite good. It should be noted that for small inclination
angles, the response islinear. In fact, expansion of (33) in the limitθ → 0, reveals
θ ≈ −φ/2, the slope of− 1

2 unique to this choice of an exponential disorder distribution;
see, too, equation (34). Also included in this figure are the theoretical and numerical results
for the geometric distribution for two distinct values of the parameterp. Here, we again
find good agreement. In the small angle limit, it can be readily shown that the slope in the
linear regime is equal to−1/(1+√1/(1− p)), which explains our selection ofp = 3

4,
8
9

and is nicely reflected in the figure itself. As is apparent in all cases, the optimal navigation
direction varies quite rapidly as the destination line inclination approachesπ/4; i.e. as the
wedge geometry becomes strongly skewed.



Ground-state energy anisotropy for directed polymers 5951

6. Conclusions

In this paper we have derived a number of properties of directed optimal paths in
random media, some of which are specific to the underlying disorder distribution, such
as equation (8), while others, e.g. equations (25), (32) and (35), are universally valid. A
surprising result is the simplicity of the expression (8) for the maximum path energy in
the case of exponential or geometric disorder. As was mentioned above, its derivation
relies crucially on the Markovian nature of the underlying dynamical model, and therefore
it is unlikely that comparably explicit results could be obtained for other distributions.
Nevertheless it seems conceivable that equation (8) has some validity as an approximation,
or possibly as a bound onemax(φ) in the general case also.

To conclude, we would like to point out a possible experimental realization of our
work. There is considerable evidence that the DPRM provides a reasonable model for
fracture lines in two dimensions, at least for quasistatic fracture of ductile materials [26–
28]. An important example is the rupture of paper [29]. As a consequence of the fabrication
procedure, machine-made paper is strongly anisotropic [30]. Applying the considerations
of section 5.2, we therefore expect that a strip of paper which is cut at some angleθ

relative to the direction of minimal or maximal strength will rupture along a line which
forms some nontrivial angleφ(θ) with respect to the strip edges. Through the relation (33),
systematic measurements ofφ(θ) would then provide information about the underlying
strength anisotropy.
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